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Introduction

Progress in the treatment of malignant brain tumors has been 
disappointing, particularly in regards to the treatment of high-
grade gliomas (WHO grades III and IV). With current standard 
therapy, which includes surgical resection when feasible, radiation 
and temozolomide chemotherapy, patient survival is a mere 2–5 
years for anaplastic glioma patients and only 12–15 months for 
patients with glioblastoma.1 Studies suggest that the development 
and prevalent resistance of brain tumors is attributed to a small 
population of tumor cells within the heterogeneous tumor mass 
with stem-like character. These cells form tumors more readily 
upon transplantation into mice and are called brain tumor stem-
like cells (BTSCs) also called brain tumor-initiating cells. These 
BTSCs have been shown to utilize a variety of mechanisms to 
preferentially survive therapy.

It is believed that our best hope for improved treatment 
lies in the development of therapies that selectively target this 
population. Successful therapeutic targeting of BTSCs requires 
improvements in our understanding of the signaling mechanisms 
that regulate their stem-like behavior. Similar to their normal 
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stem cell counterparts, BTSCs are not randomly distributed 
throughout the tumor mass, but are concentrated in specific 
microenvironments. The microenvironments in which BTSCs 
reside, is gradually beginning to be understood to heavily influ-
ence the behavior of resident BTSCs. It follows that better char-
acterization of the signaling events within these niches is central 
to understanding BTSC function.

Within certain brain tumors, particularly PDGF-induced 
gliomas, these BTSC microenvironments are observed in pseu-
dopalisading necrotic regions and microvascular proliferating 
zones (also called perivascular niches).2-4 Our current knowledge 
of the molecular mechanisms active within these niches in brain 
tumors is best understood in perivascular niche locations and will 
subsequently be the focus of this review. In the present work we 
review the current understanding of the various signaling path-
ways activated in the brain tumor perivascular niche (PVN) as 
well as recent evidence highlighting various inter-cellular cross-
talk between the multitude of cell types located in the brain 
tumor PVN. Finally, we outline a model, based on the available 
evidence, to describe the potential signaling mechanisms operat-
ing in the PVN of brain tumors. Investigations of the cellular 
interactions and signaling pathways activated in the brain tumor 
PVN that potentially maintain BTSC properties may lead to the 
design of novel therapeutic strategies that can efficiently target 
the BTSC population.

The Tumor Perivascular Niche as a Haven  
for Brain Tumor Stem Cells

Adult neural stem cells (NSCs) are not distributed in random 
locations throughout the brain but are instead specifically con-
centrated in close proximity to blood vessels.5 Indeed, the vascu-
lature is an integral component of the major stem cell niches in 
the brain [the subventricular zone (SVZ) and subgranular zone 
(SGZ)], with a critical function of supporting stem cell prolif-
eration and regeneration.6,7 The importance of the vasculature 
to neural stem cells has been identified most clearly in the SVZ 
where in vivo, NSCs and their progenitors directly contact the 
vasculature. The vasculature appears critical for supporting 
NSCs and their progeny6,7 by regulating the capacity of these 
cells to proliferate and differentiate. Emerging data suggest 
that this relationship extends to the microenvironment of brain 
tumors.

Glioblastoma, the most frequent and aggressive malignant 
brain tumor, has a very poor prognosis of approximately 
1-year. The associated aggressive phenotype and therapeutic 
resistance of glioblastoma is postulated to be due to putative 
brain tumor stem-like cells (BTSC). The best hope for improved 
therapy lies in the ability to understand the molecular 
biology that controls BTSC behavior. The tumor vascular 
microenvironment of brain tumors has emerged as important 
regulators of BTSC behavior. emerging data have identified 
the vascular microenvironment as home to a multitude of cell 
types engaged in various signaling that work collectively to 
foster a supportive environment for BTSCs. Characterization 
of the signaling pathways and intercellular communication 
between resident cell types in the microvascular niche of brain 
tumors is critical to the identification of potential BTSC-specific 
targets for therapy.
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highlight the growing recognition of the PVN as a critical par-
ticipant in BTSC regulation.

Other Non-Tumor Perivascular  
Niche-Associated Cells

Currently, very little is understood about the structural organiza-
tion of the PVN in brain tumors. In terms of the architectural 
make-up of cell types located in the PVN, we are only at the 
beginning stages of our understanding of their associated func-
tions as they might relate to supporting resident BTSC popula-
tions localized to the niche. In addition to the BTSCs discussed 
above, the major cell types known to reside in the brain tumor 
PVN, are pericytes; immune cells including lymphocytes, mac-
rophages and microglia; astrocytes, fibroblasts and endothelial 
cells that line the vasculature (Fig. 1). Each of these individual 
cell types makes distinct contributions to tumor progression by 
either contributing to the formation and stability of the microen-
vironment that supports the BTSC population or by promoting 
conditions within the niche that facilitates tumor progression.

Pericytes. Pericytes are reportedly derived from mesenchymal 
stem cells or neural crest cells.11 They surround, stabilize and 
maintain the integrity of the walls of newly developed vascu-
lature.12,13 In the brain, pericytes have also been reported to be 
involved in immunological functions.11 They tend to be largely 

A characteristic feature of high-grade character in gliomas 
is the presence of microvascular proliferating structures.1 These 
angiogenic entities represent regions of hyper-proliferative tumor 
stromal and endothelial cells.8 The density of microvascular pro-
liferation in human astrocytic brain tumors strongly correlates 
with patient survival.9 In fact, the existence of microvascular pro-
liferating structures is recognized as one of the early indicators of 
malignant progression and is currently a component that defines 
high-grade gliomas by the WHO.

The brain tumor PVN, defined as the area that borders angio-
genic/tumor microvascular structures, is a prime location for 
BTSCs.2-4 Recent data suggest that establishment of the brain 
tumor PVN facilitates expansion and differentiation of BTSCs. 
Indeed, the density of these PVN regions appeared to correlate 
with the number of BTSCs across several brain tumor subtypes 
including oligodendrogliomas and glioblastomas.2

A similar study identified PVN regions in medulloblasto-
mas as prime locations for BTSCs that express both nestin and 
notch.3 These nestin-expressing BTSCs preferentially survived 
radiotherapy relative to the tumor bulk to allow repopulation and 
regeneration of the tumor after therapy. Several reports identify 
a variety of mechanisms that mediate these radioresistant effects. 
A discussion of the mechanisms that mediate BTSC resistance to 
therapy is beyond the scope of this review, the interested reader 
is directed to the following reviews.162,163 However, these studies 

Figure 1. The brain tumor PvN is a heterogenous composition of cell types. Some of these include astrocytes, endothelial cells, macrophages, mi-
croglia, non-tumor initiating cells and brain tumor stem-like cells (BTSCs). BTSCs are intimately connected with endothelial cells, which are a source 
of niche-driven signals that help maintain BTSC properties. Astrocytes are closely aligned with endothelial cells but are also found widely dispersed 
throughout the tumor and signal to endothelial cells as ell as other stromal cells within the tumor microenvironment to support tumor progression. 
Therapies targeted to the PvN and individual contributions provided by stromal cells within the tumor microenvironment. More importantly, under-
standing the molecular signals that mediate interactions between multiple cell types is key to successfully finding therapies targeted to the PvN.
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strongly correlated with vascular density in human gliomas.34,35 
In a similar report, Tie-2 expressing monocytes (from which 
macrophages originate) were identified to function critically in 
the induction of angiogenesis in several glioma mouse models. 
Genetic deletion of Tie-2 expressing cells in vivo was found to 
substantially suppress angiogenesis and initiated significant 
tumor regression.36 In a more recent study that utilized an ortho-
topic glioblastoma mouse model, macrophage recruitment was 
shown to play a role in the induction of brain tumor angiogen-
esis and tumor cell invasiveness.37 Recruitment of macrophages 
in this study was dependent on the activity of HIF-1α. Some 
reports have also identified tumor suppressor effects of mac-
rophages in brain tumors. For example bone marrow derived 
macrophages were demonstrated to bind and phagocytose T9 
glioma tumor cells that expressed the membrane bound form of 
macrophage-CSF. Macrophage induced cytolysis of T9 glioma 
cells was shown to mediate survival of mice.38 Tumor infiltrating 
macrophages were recently found to express the immune-modu-
latory nonclassical molecules HLA-G and HLA-E in a majorty of 
human GBMs analyzed. The expression of these molecules was 
suggested to function in tumor suppressor effects mediated by 
the macrophage population.39

astrocytes. In the normal brain, astrocytes function as sup-
port cells as well as bonafide stem cells that express glial fibrillary 
acidic protein (GFAP).40 Perivascular astrocytes are closely asso-
ciated with the endothelium. This close association is tied to its 
critical function in the induction and maintenance of the blood 
brain barrier (BBB).41 Astrocytes are known to regulate the activ-
ity of neural stem cells through contact as well as by secretion 
of diffusible signals.42-44 At the molecular level, the specific role 
of reactive astrocytes in the perivascular niche of brain tumors 
is poorly understood. One study identified the localization of 
sonic hedge-hog (SHH) expressing reactive astrocytes in the 
perivascular niche of gliomas.45 In this study, the levels of reactive 
astrocytes and Gli signaling were found to directly correlate with 
increasing grade of these gliomas. In addition, Gli signaling cor-
responded to the expression of SHH in the PVN of these tumors 
and the SHH expressing astrocytes were observed to be closely 
apposed to the perivascular nestin expressing stem cell-like popu-
lation. Moreover, SHH/Gli signaling has been shown to be criti-
cal for BTSC self-renewal and is required for sustained growth 
and survival of gliomas.46,47 In addition, tumor associated astro-
cytes play a role in glioblastoma cell invasion via activation of 
metalloproteinases.48 Astrocyte elevated gene-1 (AEG-1) initially 
isolated from human fetal astrocytes,49 was identified to be highly 
expressed in malignant gliomas and was demonstrated to mediate 
glioma invasion.50 Furthermore, glioma stem cell-like/progenitor 
cells are known to express the SHH receptor Patched.51 It is there-
fore plausible that perivascular reactive astrocytes identified in 
these giomas can mediate Gli activation in adjacent BTSCs. This 
would imply that reactive astrocytes in the glioma PVN may help 
maintain the stem cell properties of BTSC populations in these 
gliomas.

endothelial cells. Endothelial cells are a core component 
of the BBB. They protect the brain from potentially harmful 
substances and also serve the nutritional demands of the CNS. 

localized to microvessels where they are tightly associated with 
endothelial cells, separated only by a shared basement membrane. 
In addition, a codependent relationship appears to exist between 
pericytes and endothelial cells where they can each influence 
the mitotic activities of one another.14 Pericytes express various 
markers some of which include, nerve/glial antigen 2 proteogly-
can (NG2),15,16 α-smooth muscle actin (α-SMA),17 desmin18 and 
platelet- derived growth factor receptor β (PDGFRβ).19 However, 
none of these markers are absolutely specific for pericytes, their 
expression varies within specific tissues and developmental stages. 
Previous studies suggested a role for pericytes in microvascular 
proliferation in tumors. Pericyte recruitment has been identified 
to contribute to tumor vessel stabilization and survival of the vas-
cular niche in pancreatic,18 melanoma20 and brain tumors.10,21 In 
addition, in gliomas and other malignant human brain tumors, 
perivascular localized pericytes are believed to play a critical role 
in shaping the angio-architecture of the tumor vascular niche.10,16

immune cells (macrophages). Immune cells are an additional 
component of the non-malignant cell populations located in 
the brain tumor microenvironment and include macrophages, 
lymphocytes and natural killer cells. As macrophages are the 
predominant immune-cell population in gliomas,22,23 the discus-
sion will focus on this population. In general, macrophages in 
the brain are referred to as microglia. Macrophages have been 
shown to reside in perivascular niche locations of the brain.24 
Historically, the presence of these immune cells in gliomas was 
postulated as a host defense mechanism to suppress dividing neo-
plastic cells25 however, recent studies have identified glioma cells 
to play a direct role in recruitment of immune cells into tumors 
to support tumor growth.

Macrophages originate from CD34+ bone marrow progenitors, 
which later mature into monocytes.26 Monocytes subsequently 
differentiate into several cell types including macrophages, 
which constitute a significant proportion (5–20%) of the total 
cell population in brain tumors,27 and can be as much as 50% 
in some tumors.28 It has been suggested that BTSCs within the 
tumor microenvironment help facilitate tumorigenesis by driv-
ing an inflammatory environment in the BTSC vascular niche.29 
Macrophages can be localized to distinct locations following 
their recruitment into the tumor. They can be localized to the 
advancing tip of the tumor where they are involved in mediating 
tumor cell motility, they can be localized to stromal and PVN 
locations where they have been shown to be involved in promot-
ing metastasis, or macrophages can be localized to perinecrotic 
areas where they promote angiogenesis.30

Macrophage recruitment to brain tumors is suggested to be a 
primary source of cytokines and other mediators that promote 
glioma proliferation and migration.27 Monocyte chemoattraction 
protein-1 (MCP-1) has been implicated in driving macrophage 
recruitment to gliomas to promote glioma cell proliferation31 and 
a recent report also suggests a similar role for MCP-3.32 In addi-
tion to promoting glioma cell proliferation, macrophages have 
also been implicated in glioma tumor invasion, expansion and 
angiogenesis. For instance, upregulation of the membrane bound 
metalloprotease MMP-1, by tumor macrophages was required 
for glioma expansion.33 Tumor infiltration of macrophages was 
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communication between endothelial cells and btscs. 
Endothelial cells and NSCs are involved in molecular crosstalk 
that is mediated through direct interactions of NSCs with the 
vasculature6 as well as through diffusible signals released from 
the vasculature.53,68-70 Co-culture experiments of endothelial 
cells with embryonic or SVZ NSCs, spurred the self-renewal 
and proliferation of NSCs, which was mediated by diffusible 
signals from endothelial cells.53 Pigment epithelium derived fac-
tor (PEDF), another diffusible signal identified to be secreted by 
endothelial cells has been proposed to regulate SVZ stem cell 
self-renewal.70 Other factors include leukemia inhibitory factor 
(LIF)65 and brain derived neurotrophic factor (BDNF).68,71 Both 
factors are known to promote proliferation and/or differentiation 
in neurogenic niches of adults.

This intercellular communication appears to be conserved in 
the context of the brain tumor microenvironment. BTSCs resid-
ing in the tumor perivscular niche, like their normal stem cell 
counterparts, can engage in cell-to-cell communication with 
tumor endothelial cells. BTSCs were observed to home towards 
the vasculature where they initiated contact, aligning themselves 
along the entire length of the vasculataure.2 The localization of 
BTSCs to the tumor vasculature puts them in an ideal position 
to respond to signaling cues from tumor endothelia. Soluble fac-
tors released from the endothelium have been shown to promote 
proliferation and self-renewal of BTSCs.2 Moreover, increasing 
the quantity of endothelial cells and therefore the endothelial-
derived factors enhanced the number of BTSCs, subsequently 
accelerating the initiation and growth of brain tumors in vivo.2 
More recently, nitric oxide has been identified as an endothelial-
derived factor within the tumor perivascular niche of the PDGF-
subset of gliomas that plays an important role in promoting 
BTSC properties. This endothelium-derived factor was shown 
to activate Notch signaling in a population of stem-like cells in 
a brain tumor mouse model. Activation of Notch signaling by 
NO accelerated the self-renewing capacity of BTSCs in vitro and 
enhanced the tumor initiating capacity of gliomas of the PDGF 
subtype in vivo.4 These studies underscore the importance of 
the cross communication between the tumor vasculature and 
BTSCs, to support BTSC function.

However, the crosstalk between the vasculature and neural 
stem cells is by no means unidirectional. In fact, neural stem 
cells have been demonstrated to communicate to the vascular 
endothelium where they drive robust vascular tube formation by 
stimulating nearby endothelial cells to produce vascular endothe-
lial growth factor (VEGF) and BDNF.72 Like their normal stem 
cell counterparts, BTSCs can also modulate the activity of the 
tumor vasculature, which helps sustain them. Bao and coworkers 
demonstrated that human glioblastoma stem-like cells expressing 
elevated levels of VEGF could induce tumor endothelial cells to 
undergo angiogenesis.73 In this study tumors derived from brain 
tumor stem cell-like populations showed greater levels of angio-
genesis, necrosis and hemorrhage in comparison to their non 
stem cell-like counterparts expressing significantly lower levels of 
VEGF. This therefore indicates the bi-directionality of crosstalk 
between BTSCs and the vascular niche.

Endothelial cells originate from hematopoetic stem cells and 
some markers used to identify endothelial cells in gliomas include 
CD31, CD34 and CD36.52

Emerging data suggest that in addition to providing oxy-
gen and nutrients to NSCs, endothelial cells are also important 
sources of diffusible niche factors, which regulate neural stem 
cell self-renewal and neurogenesis.53 This mechanism appears to 
be conserved in brain tumors where endothelial derived factors 
appear to drive glioma cell proliferation54 and self-renewal char-
acteristics of perivascular BTSCs.2,4 Signaling between endothe-
lial cells and stem cells of the PVN is described below.

fibroblasts. Fibroblasts have been shown to play an important 
role in tumor progression in other cancers.55-57 Fibroblasts local-
ized to the brain tumor microenvironment have been identified 
to promote the invasion of brain tumor cells. The expression of 
matrix metalloproteases is critical for breakdown of the ECM for 
tumor invasion. Fibroblasts were shown to produce and medi-
ate activation of proMMP-2,58 a metalloproteinase associated  
with increased invasiveness and malignant progression of 
gliomas.59-61

Intercellular Cross-Talk  
within the Tumor Perivascuar Niche

Communication between the multitude of cell types that exist 
in neurogenic niches of the normal brain is coordinated to help 
maintain neural stem cells and to preserve their potential to pro-
liferate and differentiate. This logic may be extended to brain 
tumors as well.

communication between endothelial cells and astrocytes. In 
the normal brain, astrocytes have traditionally been considered as  
support cells. The close association between endothelial cells and 
astrocytes enables effective communication between the two cell 
types to foster induction and maintenance of the BBB.41 Cross-
talk between perivascular astrocytes and endothelial cells can 
upregulate the expression of tight junction proteins,62 GLUT1 
and Pgp transporters63,64 and BBB-associated enzyme activities 
of endothelial cells. These interactions ultimately enhance the 
stability of the vascular niche to support NSCs. Some studies 
suggest that endothelial cells may mediate growth and differen-
tiation of perivascular astrocytes.65 Whether similar intercellular 
communication between endothelial cells and perivascular astro-
cytes exists in the context of brain tumors is unclear. However, 
what we do know is that tumor development is associated with 
impaired BBB function and correlates with loss of astrocytic 
regulation of endothelial activity.41 The extent to which it may 
contribute to tumor progression is not known.

communication between endothelial cells and pericytes. 
Pericytes can communicate with endothelial cells through direct 
contact and also via pathways involved in paracrine signaling.11 
Pericyte-endothelial interactions have been reported in the regu-
lation of blood flow and blood brain barrier functions.14 During 
angiogeneis, pericytes can directly communicate with endothelial 
cells through direct interaction or through paracrine signals to affect 
the rate of endothelial cells differentiation and growth arrest.14,66,67
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glioma PVN regions and its expression was strongly correlated 
with increasing glioma grade.45 These findings highlight the 
importance of the hedge-hog pathway in the microenvironment 
of brain tumors, however a specific role of the pathway in the 
PVN and potential effects on resident BTSC populations within 
the niche is yet to be described.

Pi3K/akt signaling in the brain tumor Pvn. The PI3K/Akt 
pathway is frequently activated in gliomas ∼70%.91-93 Activation 
of this pathway is advantageous to the tumor as Akt promotes 
glioma proliferation, invasion and inhibits apoptosis and is thus 
critical for survival and growth of these tumors. Activation of 
the PI3K/Akt pathway and the expression of stem cell markers 
have been associated with aggressive behavior and tumor resis-
tance. Studies in human gliomas demonstrate that alterations 
in components of Akt signaling at the DNA, RNA and protein 
levels correlates with poor prognoses in patients.94 A number of 
other investigations that utilize genetic engineered mouse models 
of gliomas have shown that Akt activity contributes to glioma 
tumor formation and growth.95-98 In addition, the expression of 
nestin and CD133 were shown to be strong prognostic factors 
for glioma malignancy.99-101 Coincidentally, nestin-expressing 
BTSCs in mouse models of GBM are known to have high-levels 
of Akt pathway activity.102

In a recent study, BTSCs were demonstrated to be more 
dependent on Akt signaling than their matched non stem-cell 
counterparts. Subsequent inhibition of Akt by pharmacologic 
agents diminished BTSC capacity for neural stem cell formation, 
enhanced apoptosis and delayed tumor formation.103 The signifi-
cance of the role of PI3K/Akt signaling in facilitating resistance 
of PVN BTSCs to therapy, is highlighted by Hambardzumyan 
and coworkers, using mouse models of medulloblastomas. In this 
study BTSCs (identified by the expression of nestin and Notch) 
were found to preferentially survive radiation therapy relative to 
the non-stem cell populations within the tumor by activating 
the PI3K/Akt signaling pathway in response to radiation. These 
BTSCs preferentially survived by enhancing their expression of 
nestin and arresting instead of undergoing apoptosis as the bulk 
of tumor cells did. Following a temporary period of arrest (72 
hrs), these BTSCs reentered the cell cycle to proliferate and recon-
stitute the tumor following therapy.3 The importance of AKT 
signaling in PDGF-induced gliomas has also been demonstrated 
in preclinical trials in glioma-bearing mice by blocking the activ-
ity of mTOR using the rapamycin analog temsirolimus.104

notch signaling in the brain tumor Pvn. Notch signaling 
is highly conserved across evolution and is critically important 
for directing patterning during development and plays a key role 
in stem cell proliferation and self-renewal.105 Notch ligands and 
receptors are single-pass transmembrane proteins that mediate 
Notch signaling.106 Notch signaling involves the binding of the 
Notch ligands (Delta-like 1, 3 & 4 and Jagged 1 & 2) to Notch 
receptors (Notch 1–4) in a juxtacrine signaling mechanism. 
Ligand-receptor interaction induces a series of cleavages the final 
of which involves gamma secretase cleavage of Notch intracellu-
lar domain (NICD). NICD translocates to the nucleus where the 
binding to CSL transcription factors culminates in neural stem 
cell proliferation and suppression of their differentiation107,108  

Signaling Pathways in the Brain Tumor  
Perivascular Niche

Our current knowledge of molecular pathways that are active in 
brain tumors are mainly from studies that describe these signal-
ing pathways in the collective tumor microenvironment rather 
than in designated locations such as the PVN. Therefore, spe-
cific references will be made to those pathways that have specifi-
cally been identified, by reports, to be activated in the PVN and 
others will be described within the context of the overall tumor 
microenvironment.

The various cell types localized to the brain tumor PVN are 
involved in a multitude of signaling that may be coordinated to 
support the activity of BTSCs. These signaling pathways which 
include the SHH, PI3K/Akt, Wnt and the Notch signaling path-
ways have all been demonstrated to be activated in the microenvi-
ronemnt of brain tumors. As the aforementioned signaling pathways 
are known to regulate the self-renewal and proliferative properties 
of normal stem cells,74 much research is focused on their potential 
involvement in regulating the stem-cell properties of BTSCs.

sonic hedgehog signaling in the brain tumor Pvn. Sonic 
hedgehog (SHH) is a secreted protein that plays a critical role 
in controlling fate of ventral cell types in the CNS during 
embryogenesis by mediating both cell proliferation and differen-
tiation.75-77 The binding of SHH to its receptor Patched releases 
tonic inhibition of Smoothened (SMO) by Patched. Smoothened 
release triggers activation of the Gli (named for their discovery 
in gliomas) family of transcription factors. These transcription 
factors subsequently induce translation of genes that function in 
maintaining the “stemness” of NSCs in the adult CNS.78 SHH 
regulates the proliferation of astrocytic cells (type B cells) and 
transit amplifying cells (type C cells) in the adult SVZ.36,79 
Although GLI was first described in the context of gliomas,80 
its role in tumor formation has been studied in more detail in 
medulloblastoma, a primary brain tumor that arises in chil-
dren.81,82 Recent reports have helped to elucidate the mechanisms 
that mediate SHH induced proliferation and transformation of 
medulloblastomas.83,84 A recent report has identified the tran-
scription factor Yap1 expression in the PVN of medulloblatomas, 
which co-localized with stem-like markers and was identified to 
mediate SHH driven medulloblastoma formation.83

There have been several isolated studies exploring the impor-
tance of GLI and the broader SHH/PTCH/SMO/GLI cascade in 
gliomas. These studies have described the activity of SHH signal-
ing within the collective tumor microenvironment. For example, 
GLI amplification occurs in a small subset of gliomas85-87 and 
SMO inhibition by the drug cyclopamine reduces glioma cell 
proliferation.46,51,88,89 Recent reports have suggested potential 
roles of the SHH pathway in glioma progression. Gli1 expression 
was closely correlated with pathological grades of human glio-
mas and RNAi knock-down of SHH/Gli signaling significantly 
suppressed glioma migration and invasion.90 Using the RCAS/tva 
system in Gli reporter mice, Becher and colleagues demonstrated 
that sonic signaling was activated in mouse gliomas induced by 
PDGF overexpression. Immunohistochemical analysis of gliomas 
demonstrated elevated SHH protein expression localized to the 



www.landesbioscience.com Cell Cycle 3017

isoforms are neuronal (nNOS), inducible (iNOS) and endothe-
lial NOS (eNOS). In general nNOS and eNOS are expressed 
constitutively in neurons and endothelial cells respectively, but 
can be expressed by other cells. Their activity depends on the lev-
els of intracellular calcium to produce approximately nanomolar 
amounts of NO. Expression of iNOS in contrast, is induced, and 
its expression is generally not affected by levels of intracellular 
calcium.127 The major NO signaling pathway involves produc-
tion of cyclic guanosine-3',5'-monophosphate (cGMP) by way of 
activation of soluble guanylyl cyclase, the major receptor for NO 
and its downstream effector, protein kinase G (PKG).

We have recently demonstrated signaling by the NO/cGMP 
pathway in the perivascular niche of the PDGF subset of gliomas.4 
We show that NO activates Notch signaling in a population of 
perivasular localized brain tumor stem-like cells that express 
nestin and notch. This is consistent with previous reports where 
NO was identified to drive activation of the Notch pathway in 
cholangiocarcinomas.128 Our data demonstrates that activation 
of Notch signaling in perivascular BTSCs by NO released from 
the tumor endothelium enhanced BTSC-like characteristics and 
accelerated tumor formation in mice. This data identifies compo-
nents of the NO-cGMP pathway as potential targets for therapy 
and suggests that changes of brain tumor cells towards BTSC-
like features can be induced by the microenvironment.

other brain tumor stem cell signaling pathways that may or 
may not contribute to perivascular niche biology. In addition to 
the pathways mentioned above, there are several other signaling 
pathways known to be important regulators of BTSC activity. 
These include the Bone morphogenetic protein/Smad (BMP/
Smad) signaling and Wnt signaling pathways. Nonetheless, 
although the assertion can be made that these pathways are likely 
active in the brain tumor PVN specifically, this remains to be 
demonstrated.

BMP/Smad signaling. Bone morphogenetic proteins (BMPs) 
are members of the TGF-β/Smad family of growth factors that 
regulate a variety of biological processes including bone and car-
tilage formation and embryonic stem cell self-renewal and differ-
entiation.129 Binding of BMPs to their cognate receptors BMPRs 
elicits the downstream effects of BMPs, which involves activa-
tion of Smad proteins. BMPs play a critical role in the regula-
tion of NSC proliferation and apoptosis, and usually promotes 
NSC differentiation.130 BTSCs were identified to express BMPRs 
and therefore retained the capacity for regulation by BMPs. 
Treatment of BTSCs with BMPs inhibited proliferation of BTSCs 
and induced their differentiation to astroglial and neuron-like 
cell fates, which diminished the capacity of BTSCs to initiate 
tumors in vivo.131 A similar report by Lee and co workers dem-
onstrated differentiation of BTSCs following BMP treatment. 
However, a subset of BTSCs that did not express the appropriate 
BMPR1B receptor showed enhanced proliferation in response to 
BMP treatment instead of differentiation. Forced expression of 
BMPR1B sensitized this subset of BTSCs to BMP-induced dif-
ferentiation132 suggesting that the expression pattern of BMPR 
may dictate the response of BTSCs to BMP treatment.

A more recent study demonstrated that knockdown of 
TRRAP—an adaptor protein with homology to PIKK 

among many other functions. Notch is required for neural pro-
genitors both in vitro and in vivo109 and it is essential for the 
maintenance of neural stem cells.110,111

With regards to cancer, a substantial amount of data has 
linked activation of the Notch pathway to tumor develop-
ment in many types of cancers112 including brain tumors. The 
expression of Hey1 (a downstream target of Notch) was corre-
lated with tumor grade and survival of human GBM patients.113 
Notch-1, along with its receptors Jagged-1 and delta- like-1, 
play an integral role in high-grade glioma and medulloblastoma 
formation.114-117 Notch was identified to drive BTSC activity in 
medulloblastomas.118 Pharmacological blockade of the notch 
pathway diminished nestin- and CD133-positive populations as 
well as the side population (SP) within medulloblastoma cells and 
decreased their tumor initiating capacity in vivo. Notch activa-
tion was also shown to enhance the expression of nestin in these 
medulloblatoma cells.118 The link between Notch signaling and 
BTSC function in gliomas was established in a related study that 
identified CSL binding sites for Notch in the promoter region 
of human nestin, implying regulation of nestin by the Notch 
pathway. In this investigation Notch signaling was shown to 
increase the expression of nestin and in combination with Kras, 
induced proliferative lesions in the NSC enriched periventricu-
lar regions in a glioblastoma mouse model.119 In addition, acti-
vated Notch signaling in a human glioma cell line enhanced 
the formation of neurosphere-like colonies120 and Notch signal-
ing was required for Id-4 induced neural stem-like properties of 
Ink4aArf-/- astrocytes.117

We have recently identified a critical role of the notch path-
way in driving the stem cell-like characteristics of BTCSs which 
reside in the glioma PVN.4 Perivascular nestin- expressing BTSCs 
co-expressed Notch-1 and activation of Notch mediated through 
nitric oxide signaling was shown to enhance the tumor initiating 
capacity of PDGF-induced glioma primary cultures.4

Notch signaling within the tumor vascular microenvironment 
has also been shown to regulate tumor angiogenesis in several 
cancers.121-123 Delta-like4 (DLL4) expression was shown to be 
upregulated in tumor cells and tumor endothelial cells of human 
glioblastoma. Using a mouse model of glioblastoma it was dem-
onstrated that DLL4 expression by tumor cells activated notch 
signaling in endothelial cells to drive tumor angiogenesis.124 
In addition, anti-DDL4 treatment of tumor cells in a glioblas-
toma model inhibited growth of glioblastomas by paradoxi-
cally enhancing growth of non-functional tumor vasculature.125 
Collectively, these studies have highlighted the importance of the 
Notch pathway in tumor development, and suggest that selective 
targeting of the Notch pathway may be an effective way to target 
the brain tumor microenvironment.

nitric oxide (no)/cGmP signaling in the brain tumor 
perivascular niche. NO is a highly reactive free radicle with a 
half-life of approximately 2–5 secs.126 It is a highly lipophilic and 
diffusible molecule, which can readily disperse from its site of 
synthesis to traverse multiple cell membranes en route to its final 
target. NO is generated from a family of NADPH-dependent 
enzymes called nitric oxide synthases (NOS) from the terminal 
guanido nitrogen atom of L-arginine. The three major NOS 
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Targeting endothelial cells of the tumor vasculature can be an 
alternative approach used to subvert BTSC function. Studies have 
shown that disrupting the vascular niche microenvironment in 
which BTSCs reside, and which is critical for their maintenance 
might be a viable approach to targeting BTSCs.2,155 One might 
imagine that destruction of the vascular niche likely eliminates 
the supportive environment the vasculature provides to BTSCs. 
Indeed, Bevacizumab (Avastin), a monoclonal antibody targeted 
against VEGF-A and Cediranib (AZD2171), a small molecule 
inhibitor of VEGF, have been used in the clinic with some suc-
cess.156-158 In experimental models, targeting the brain tumor 
vascular niche with the use of anti-angiogenics has shown some 
promise. The anti-angiogenic monoclonal antibody against 
VEFGR-2, DC101, markedly suppressed experimental malig-
nant glioma growth.159 The suppression of tumor volumes and 
microvessel density of tumor-bearing mice, relative to control ani-
mals, corresponded with decreased tumor cell proliferation and 
increased apoptosis. The authors of the study observed an increase 
in tumor invasive features from DC101 monotherapy, which was 
suppressed with combined EGFR blockade.160 Another study that 
utilized PTK787, an inhibitor of VEGFR and PDGFR tyrosine  
kinases, led to significant reductions in tumor volumes and vessel 
density.161

Although suppression of the tumor-associated effects of many 
of these studies is ascribed to suppression of angiogenesis, it is 
conceivable that adverse effects on the BTSC populations might 
have also contributed to these overall effects of tumor suppres-
sion. Examination of the BTSC populations before and after 
treatment in these tumors may shed some light on this possibil-
ity. Indeed, work by Calabrese and co workers demonstrated that 
treatment of mice bearing orthotopic xenografts of human glio-
blastomas cells with bevacizumab, significantly diminished the 
population of perivascular localized BTSCs (with little impact 
on the actual tumor cells) and suppressed tumor growth rate.2 
In addition, Folkins et al. showed, using a C6 rat glioma model, 
that anti-angiogenic treatment in combination with cytotoxic 
compounds, diminished the BTSC populations as well as their 
neurosphere forming capacities.155 These studies strongly suggest 
that current anti-angiogenic treatments may already be targeting 
the BTSC populations in brain tumors.

Conclusion

The tumor PVN microenvironment is composed of a complex 
array of cell types, each with individual contributing roles to play 
in the maintenance of the tumor. This reality has far- reaching 
implications for therapies designed to target the PVN. These ther-
apies will have to consider the complex milieu of cellular elements 
within the PVN and the signals that facilitate communication 
among resident cell types. Approaches designed to antagonize the 
various combinations in which these signals may interact, will be 
key to successfully targeting the PVN for therapy.
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kinases—could suppress BTSC proliferation and induce their 
differentiation to an astroglial lineage. These effects of TRRAP 
were mediated by suppression of cyclin A2 gene expression and 
enhanced BMP/Smad signaling.133,134

Wnt signaling. The Wnt pathway is involved in several key 
developmental processes such as proliferation, stem cell main-
tenance, pattern formation and differentiation.135 Wnt signaling 
has been shown to play a role in SVZ progenitor cell proliferation 
and neurogenesis in neonatal and adult mice136,137 and to regulate 
stem cell fate and differentiation in vivo.138 Wnt signaling was 
initially implicated in contributing to medulloblastomas.139,140 
Mutations in downstream mediators of Wnt signaling, such as 
Axin, β-catenin and APC were found in sporadic medulloblasto-
mas,141-143 and nuclear localization of β-catenin, which is indica-
tive of constitutive Wnt signaling, has also been found.144

Moreover, DKK-1, an endogenous antagonist of the Wnt 
pathway was reported to be epigenetically silenced in medullo-
blastomas and its reactivation was found to enhance apoptosis 
and induce a 60% reduction in tumor growth.145

Negative regulators of the Wnt pathway are frequently hyper-
methylated in glioblastomas.146 Ectopic expression of the Wnt 
negative regulator, DKK-1 in the human glioma U87MG cell 
line sensitized these cells to chemotherapy-induced apoptosis.147 
In addition, several components of the Wnt pathway were found 
to be upregulated in gliomas, including Wnt 5A and Frizzled 9, 
a receptor of the canonical Wnt pathway148-150 The Wnt pathway 
has also been demonstrated to mediate cell proliferation and the 
invasive capacity of gliomas. Immunohistochemical analysis of 45 
human astrocytomas demonstrated an upregulation of core com-
ponents of the Wnt pathway. Suppression of these components 
significantly decreased cell proliferation and invasion and delayed 
tumor formation in mice. This effect of Wnt suppression on glio-
mas was associated with disruption of the PI3K/Akt pathway151 
suggesting cross communication between these two signaling axes.

Therapeutic Targeting of the Brain Tumor 
Perivascular Niche Complex

According to the cancer stem cell hypothesis, BTSCs are the 
engines that drive brain tumor progression and recurrence. 
Therefore, effective targeting of this population is critical to 
all efforts designed to eradicate brain tumors. Since BTSCs are 
known to reside in the PVN regions of these tumors, one prom-
ising strategy involves targeting intracellular pathways that are 
active in the brain tumor PVN, pathways which promote BTSCs 
self-renewal, proliferation and migration. These signaling path-
ways include SHH, PI3K/AKT, Notch and more recently the 
NO/cGMP signaling pathway. Targeting these pathways with 
inhibitors have all been demonstrated to suppress glioma progres-
sion and sensitize brain tumors to therapy.3,89,118,152,153 Additional 
pathways such as DNA damage checkpoint pathways (Chk1&2), 
Wnt and BMP/Smad that regulate the activity of brain tumor 
cells are also important, and targeting these pathways have been 
demonstrated to suppress brain tumor growth in experimental 
and preclinical models.131,133,154 However, it is unknown whether 
these pathways are active in the PVN of brain tumors.
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